

Mega Project Management

Matthew Smith – Partner, K&L Gates LLP Inga Hall – Special Counsel, K&L Gates LLP

WELCOME AND INTRODUCTION

- Session coverage:
 - What is a mega project?

K&L GATES

- Reasons for the increase in size and frequency of mega projects
- What is their track record and reasons why they fail?
- What are the drivers for increase in cost of a mega project?
- What are the characteristics of good mega project management?
- An LNG EPC case study
- Common mistakes and pitfalls when managing mega projects

WHAT IS A MEGA PROJECT?

- A mega project is an extremely large-scale investment project
- Wide sector coverage e.g.
 - oil/gas, mining, construction and infrastructure sectors
 - also water and energy
 - IT, industrial processing, science/space/defence
 - government admin and intelligence, banking etc.

MEGA PROJECT CHARACTERISTICS

- Typically defined as costing more than US \$1 billion, and \$50-100 billion projects are common
- Often characterised by comparably high benefits and correspondingly high risk
- They typically take many years to develop and build
- Involve multiple public and private stakeholders and large labour forces
- Can have substantial impacts on communities, the environment and economies - locally, nationally, regionally and in some cases internationally

MEGA PROJECT CHARACTERISTICS

- Unique characteristics i.e. mega projects are not just a bigger version of a smaller project
- Project management must fit with those characteristics to be successful
- Conventional project management processes and priorities can be a square peg in a round hole

SOME FACTS AND FIGURES

- Total global mega project spending USD 6-9 trillion annually (8% of total global GDP)
- If \$50-100 billion projects were countries, they'd be in the top 100 countries by GDP
- Mega projects can dwarf international debts between countries
- Meeting global energy needs is estimated to need \$17 trillion investment by 2030 (International Energy Agency)
- \$57 trillion needs to be spent on infrastructure by 2030 to enable the anticipated levels of GDP growth globally (McKinsey Global Institute)
- Two-thirds will be required in developing markets
- During 2004-2008 China spent more on infrastructure in real terms than in the whole of the twentieth century
- China's One Belt One Road Initiative estimates for these projects range from between \$1 trillion to \$8 trillion

GEOGRAPHICAL SPREAD AND EXAMPLES

- Mega projects are undertaken everywhere
- Increasingly in Less Developed Countries (LDCs)
- Major 'hubs' across India, the UAE and China
- Historical mega projects include:
 - Sydney Opera House
 - Channel Tunnel
 - Burg Khalifa
 - Dubai Metro
 - Panama Canal Expansion

GEOGRAPHICAL SPREAD AND EXAMPLES

- Current mega projects include:
 - Doha Metro
 - HS2
 - Crossrail
 - MRT
 - Hong Kong-Zhuhai-Macao Bridge

GROWTH OF MEGA PROJECTS

- Mega projects are getting bigger, spanning more sectors and increasing in frequency
- Why?
 - Economic kick start after a recession
 - To meet demand, especially in emerging markets
 - The success of optimism over experience in aiming for "bigger/taller/faster"
 - Technological, political, economic and aesthetic reasons behind many mega projects

MEGA PROJECTS' TRACK RECORD

- Look great on paper
- If done well, social and economic benefits can be huge
- It's a big "if"...
- ...and it depends on how you judge success
- But mega projects do not have a good track record of success when judged on traditional 'on time and on budget' criteria

MEGA PROJECTS' TRACK RECORD

- 90% go over budget (Flyvbjerg)
- Overruns of 50% are common
- The problem is global and spans private and public projects
- Rail projects go over budget by an average of 44.7%, and their demand is overestimated by 51.4%
- Bridges and tunnels incur an average 35% cost overrun; for roads, it's 20% (McKinsey)
- Time overruns and benefit shortfalls are also perennial problems
- But projects which 'fail' can still be great successes e.g.

klgates.com

- Channel Tunnel
- Sydney Opera House

K&L GATES

WHY DO MEGA PROJECTS FAIL?

- All the 'usual' reasons + unique reasons:
 - Over-optimism and complexity
 - Insufficient attention to project drivers and managing the schedule
 - Leadership and project management issues

K&L GATES

Poor execution

OVER-OPTIMISM AND COMPLEXITY

- Costs and timelines can be underestimated in order to "get to yes" – stakeholders often aware of this
- Optimism over experience optimism bias
- Lack of proper business case analysis, lack of data, lack of lessons learned analysis
- Complexity underestimated
- Impact of long time scales (e.g. on technology) put proper planning in the 'too hard' basket

INSUFFICIENT ATTENTION TO PROJECT DRIVERS AND SCHEDULE

- Project drivers (e.g. cost vs. schedule) are a key factor
- With a 'fast track' schedule-driven project design, engineering and construction phases may overlap
- Research has shown that mega projects with aggressive schedules tended to perform worse than those with realistic schedules
- Typically, as the duration of the engineeringconstruction overlap increases, delays and inefficiencies in construction also increase
- Overlap may decrease productivity and increase the likelihood of changes

LEADERSHIP AND PROJECT MANAGEMENT ISSUES

- Management disconnect
- Decision-making accountability

- Poor project management
- Key personnel movement over time
- Lack of robust risk-analysis and riskmanagement tools that fail to keep up with the demands of such large projects

POOR EXECUTION

- Unrealistically low project budget and schedule can lead to cutting corners to maintain cost assumptions and protect profit margins
- Project complexity means routine problems have escalated impact
- Low productivity issues
- Scope changes, claims and disputes

DRIVERS FOR INCREASE IN COST OF A MEGAPROJECT

Oxford Institute for Energy Studies ranks the most important drivers for escalation in cost:

- (1) Project Scope
- (2) Project Complexity
- (3) Location
- (4) Equipment and Materials
- (5) Engineering and Project Management
- (6) Contractor Profit and Risk
- (7) Owner's Costs
- (8) Contract Strategy
- (9) Currency Exchange Risk

KEY CHARACTERISTICS OF GOOD MEGA PROJECT MANAGEMENT

- Like any major project, scope, procurement, planning, time, cost, quality, resources and risk all need to be managed
- "Management" refers to all decision makers in the process, not just the project manager in charge of the site team

 Planning on the basis of a clear understanding of project objectives

KEY CHARACTERISTICS OF GOOD MEGA PROJECT MANAGEMENT (ctd.)

"The overall conclusion had to be that these cost fluctuations did not correspond to whether the plant project was a grass-roots project or an expansion or whether it was a 1-train or 2-trains project; and neither train size nor technology selection seemed to play a major role. **Price dispersion appeared to be more related to good or bad project management practices by existing and new operators in the industry**."

[Study by Barbara Bruce and Carlos Lopez-Piñon on LNG Mega projects]

LNG EPC CASE STUDY

- Mega project 'credentials'
 - 10 years from planning to completion is common
 - a new build LNG Facility may have 6-8,000 people on site for up to 4 years
 - \$10-\$15bn values or more
 - LNG cost drivers include:
 - increased demand
 - Imited pool of EPC contractors/skilled labour
 - rising raw material price
 - increasing project complexity

LNG EPC CASE STUDY (ctd.)

- Main cost drivers are project scope and complexity
- Even the simplest scope (a repeat liquefaction train with minimal gas treatment) is a big multi-billion dollar project
- Full scope can include ancillary works such as air strip, construction camp, roll-on roll off dock, jetties, pipeline infrastructure and marine works such as dredging, Breakwaters, land reclamation

LNG EPC CASE STUDY (ctd.)

- Main cost drivers are project scope and complexity
- Even the simplest scope (a repeat liquefaction train with minimal gas treatment) is a big multi-billion dollar project
- Full scope can include ancillary works such as air strip, construction camp, roll-on roll off dock, jetties, pipeline infrastructure and

marine works such as dredging, Breakwaters, land reclamation Such broad, multi-project scope requires careful planning and management

- Lack of clear decision making and lines of communication
- Inadequate contingencies and lead-in times in the project schedule
- Failure to pay sufficient attention to design risks
- Failure to properly address interfaces between EPC contract and other project documents
- Insufficient attention to ground risks
- Failure to manage and control changes
- Insufficient attention to social-project risks

K&L GATES

SOME CONCLUDING OBSERVATIONS

- Mega projects are unlike other projects and demand a different approach to management
- The budget and schedule must be set without 'optimism bias' and in the context of a clear understanding of key drivers and objectives
- Strong, robust leadership is crucial
- The Project Management team must be experienced in running mega projects and empowered to make swift decisions within a clear decision making structure

K&L GATES